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Abstract: A method is presented for the efficient evaluation of long-range electrostatic forces

in combined quantum mechanical and molecular mechanical (QM/MM) calculations of periodic

systems. The QM/MM-Ewald method is a linear-scaling electrostatic method that utilizes the

particle mesh Ewald algorithm for calculation of point charge interactions of molecular mechanical

atoms and a real-space multipolar expansion for the quantum mechanical electrostatic terms

plus a pairwise periodic correction factor for the QM and QM/MM interactions that does not

need to be re-evaluated during the self-consistent field procedure. The method is tested in a

series of molecular dynamics simulations of the ion-ion association of ammonium chloride and

ammonium metaphosphate and the dissociative phosphoryl transfer of methyl phosphate and

acetyl phosphate. Results from periodic boundary molecular dynamics (PBMD) simulations

employing the QM/MM-Ewald method are compared with corresponding PBMD simulations using

electrostatic cutoffs and with results from nonperiodic stochastic boundary molecular dynamics

(SBMD) simulations, with cutoffs and with full electrostatics (no cutoff). The present method

allows extension of linear-scaling Ewald methods to molecular simulations of enzyme and

ribozyme reactions that use combined QM/MM potentials.

1. Introduction
The profound effects of solvation on chemical reactions have
been recognized for over a century and continue to attract
intensive experimental and theoretical research effort.1 For
reactions catalyzed by enzymes or ribozymes, the environ-
ment is even more complicated. The challenge in theoretical
studies of the mechanism and reactivity of chemical pro-
cesses is to move accurate quantum electronic structure
calculations from the gas phase into the condensed phase
realm. However, for large systems such as proteins and
nucleic acids, the complexity and system size preclude the
use of even the most efficient linear-scaling electronic
structure methods2 to simulate the reaction dynamics ex-
plicitly. This is further exacerbated by the need for an

adequate treatment of long-range electrostatic interactions
in polar solvents and in the presence of mobile counterions.
Fortunately, it is often the case that the vast majority of the
system does not require a high-level and computationally
intensive quantum mechanical model. This situation is ideally
suited for application of a combined quantum mechanical
and molecular mechanical (QM/MM) approach, in which the
solute is treated quantum mechanically and the environment
by classical force fields.3-6

Electrostatic interactions are generally perceived to be the
dominant forces that stabilize transition states in biochemical
reactions7-10 and provide essential stability in long-time
dynamic simulations of proteins and nucleic acids.11-16 The
development of efficient linear-scaling electrostatic meth-
ods14,17,18(methods for which the computational effort scales
linearly with system sizes or nearly so, see below) have
greatly improved the reliability of molecular dynamics
simulations of large biological systems. In combined QM/
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MM potential models, the electrostatic environment affects
the quantum electronic polarization of the solute19 that plays
a significant role in the stabilization of macromolecules in
solution20 and the rate enhancement of some enzymes.21

Consequently, it is critical to compute long-range electrostatic
interactions accurately in QM/MM simulations of biochemi-
cal reactions. Nonetheless, due to the lack of availability of
algorithms that extend linear-scaling electrostatic methods
to combined QM/MM potentials, a large percentage of QM/
MM applications routinely employ electrostatic cutoffs.10

The present paper presents a linear-scaling Ewald method
for efficient calculation of long-range electrostatic interac-
tions in combined QM/MM simulations using semiempirical
quantum models. The method can be easily extended to QM/
MM ab initio molecular orbital and density functional theory.
In the following, the essential theory and computational
details are first outlined. Next, results obtained using the QM/
MM-Ewald method are compared with those from other
simulations by computing interionic potentials of mean force
for ion association and for phosphoryl transfer reactions.
Specifically, periodic boundary molecular dynamics (PBMD)
simulations calculated with the QM/MM-Ewald method are
compared with corresponding PBMD simulations using
electrostatic cutoffs and with results from nonperiodic
stochastic boundary molecular dynamics (SBMD) simula-
tions, with cutoffs and with full electrostatics (no cutoff).
Finally, the paper concludes with a summary of the key
results and identifies directions of future research.

2. Theory
2.1. Electrostatic Energy of a Periodic System of Point
Charges.Consider a periodic system ofN point charges{qi}
located at position{r i}, i ) 1, ‚‚‚, N, in a periodic unit cell
U characterized by the set of real-space lattice vectors{ak},
k ) 1, 2, 3. The classical electrostatic energy of this system,
excluding the infinite self-energy of the point charges, is
given by

wherer ij ) r i - r j, and the summation overn is over all
integer translations of the real space lattice vectorsn )
n1a1 + n2a2 + n3a3 for integersnk (k ) 1, 2, 3), and the
prime symbol indicates that the terms where|r ij + n| ) 0
are neglected. The summation in eq 1 is not convergent
unless the total charge of the system sums to zero (i.e., the
monopole moment of the unit cell vanishes). If the unit cell
has vanishing monopoleand dipole moments, the sum
converges absolutely; however, if the unit cell has a net
dipole moment, the sum is only conditionally convergent and
has different converged values depending on the order and
limiting manner whereby the sum is affected.22 In any case,
the expression in eq 1, under the conditions where it does
converge, does so very slowly, and is not a practical means
of computing electrostatic energies for periodic systems.

The Ewald summation convention23,24 uses an elegant
mechanism of transforming the slowly convergent sum in

eq 1 into two rapidly convergent sums over real-space and
reciprocal space lattice vectors

where

where erfc(x) is the complementary error function, defined
as erfc(x) ) 1 - erf(x), and erf(x) is the error function.25

The summation in eq 4 is over vectorsk ) 2πm, andm
sums over all integer translations of the reciprocal lattice
m ) m1a1

/ + m2a2
/ + m3a3

/ for integersmk (k ) 1, 2, 3),
where the set of reciprocal lattice vectors{a* i} are related
to the real-space lattice vectors{ai} by ai

/‚aj ) δij. In eq 4,
V is the volume of the unit cellU (V ) |a1‚a2 × a3|), and
S(k) is the structure factor26,27 and is given by

The two summations contain a parameterκ that adjusts the
relative rates of convergence. The total energy is independent
of theκ parameter, so long as the real-space and reciprocal
space sums are both sufficiently converged. In practice, these
sums are truncated at some point so as to fall below a fixed
tolerance level in accuracyεtol. If the parameterκ is chosen
such that only the|n| ) 0 term is required in eq 3 to obtain
the desired level of accuracy (i.e., theminimum image
conVention24,28can be used to perform the summations over
particles in the unit cell), then the number of reciprocal-
space lattice vectorsk required to obtain the same level of
accuracy becomes constant with respect to scaling of the unit
cell, and an orderN2 algorithm results.26,29 If the parameter
κ is optimized for scaling efficiency, then an orderN3/2

algorithm can be obtained.30 However, to extend the method
to very large systems, a so-called “linear-scaling” algorithm
is required whereby the scaling isbetter thanorder Nλ,
∀λ > 1. Such algorithms have been developed previously,18

perhaps the most commonly employed algorithm in molec-
ular dynamics simulations is the particle mesh Ewald
method27,31 that has recently been extended to higher order
multipole moments.32

Before proceeding further, it is worthwhile to briefly
clarify further eq 4. It was mentioned previously that the
original expression of eq 1 was subject to several conver-
gence restrictions. These restrictions manifest themselves
through the|k| ) 0 term, that in eq 4 has been neglected.
Clearly care must be taken with the|k| ) 0 term since the
sum involves a 1/k2 factor, that must be resolved via a
limiting procedure involving the ratio|S(k)|/|k|. From eq 5
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it is clear that|S(0)| * 0 for a non-neutral system, consistent
with the statement earlier that eq 1 is nonconvergent under
this condition. If the system is neutral, but the unit cell has
a net dipole moment (D ) ∑jqjr j), then the|k| ) 0 term
gives rise to the surface term,Esurf(qN,rN,U;P,ε) in eq 2, that
depends quadratically on the dipole momentD

where the proportionality constantR(P,ε) depends on the
macroscopic shape of the crystal,P, and the dielectric
constant,ε, of the surrounding medium.22 The physical
interpretation of the surface term is that of an energy
associated with a dipole layer on the surface of the crystal,
embedded in a polarizable dielectric medium. In the limit
that the surrounding dielectric constant becomes infinite (i.e.,
is a conductor), the energy of the surface dipole layer
vanishes, i.e.,

In the literature, this is often referred to as employing “tin-
foil” boundary conditions.33 A number of studies have
investigated whether the inclusion of the surface term is a
physically reasonable model for macroscopic systems22,34

(since in a real crystals instantaneous microscopic fluctua-
tions of the unit cell dipole moment are not propagated
synchronously to the macroscopic limit). For most simula-
tions, this terms has little overall effect and is generally
neglected. Consequently, this term will not be further
discussed, and henceforth the assumption will be made that
the sum in reciprocal space can be made neglecting the
|k| ) 0 term (and hence the surface energy correction).

It is useful to note that the Ewald sum energy, for a neutral
system, can be written in terms of a pair potentialψE(r ij)
as11,31

where the Ewald pair potential,ψE(r ij), (assuming the Ewald
parameterκ is chosen such that the summation over real-
space lattice vectors includes only the|n| ) 0 term) is given
by

In fact, efficient Ewald sum algorithms have been designed
that precompute the Ewald pair potential on a 3-dimensional
grid and use multidimensional interpolation procedures to
allow rapid evaluation in molecular dynamics simula-
tions.18,28,35This procedure, although fast, still scales as order

N2 and hence becomes limiting for large systems. However,
as will be seen shortly, for hybrid QM/MM calculations
where the QM part of the system is small, and update of the
QM contribution to the Ewald energy is required at each
step of an SCF procedure, the use of a correction to the
Ewald pair potential becomes computationally efficient.

2.2. Electrostatic Energy of a Periodic System with a
Smooth Charge Density.The focus of the present paper is
to develop a linear-scaling method for efficient calculation
of electrostatic interactions specifically for hybrid QM/MM
calculations. The case of QM/MM calculations is somewhat
specialized in that the quantum mechanical region is typically
fairly small in relation to the much larger surrounding
molecular mechanical environment. It would be considerably
costly to Fourier transform directly the localized QM density
that would require many reciprocal space lattice vectors (or
alternatively, a very fine fast Fourier transform grid) in a
typically very large QM/MM unit cell. On the other hand,
for semiempirical QM models, there are very efficient
methods for solution of the Poisson equation for the QM
charge distribution in real space.36,37As will be discussed in
more detail below, the object of the present work is to de-
velop a method that takes advantage of the specialized
features of QM/MM calculations and capitalizes simulta-
neously on the most efficient methods for calculating electro-
statics of point charge and smooth density distributions.

To facilitate development of the method, the following
general notation is introduced for the electrostatic interaction
energy between two generalized charge distributions,QA and
QB, under real-space nonperiodic boundary conditions (RS)
and periodic boundary conditions (PB) as

whereGX(r ,r ′) is the generalized Green’s function for the
Poisson equation that is a solution of

and the superscript “X” in eq 10 specifies the boundary
conditions, which can be either “RS” or “PB” for real-space
or periodic boundary conditions, respectively. The termδA,B

is equal to 1 when the charge distributions are the same,
and zero when the charge distributions are different. In the
case thatQA and QB are the same charge distribution and
that charge distribution contains point charges, it is further
assumed that the infinite self-energy of the point charges
are neglected. In short,EX[A,B] in eq 10 represents the normal
classical electrostatic energy of the charge distributionQA

interacting with the charge distributionQB, including the
possibility thatQA andQB are identical. Note also that, by
this definition,EX[A,B] ) EX[B,A] andEX[A + B, A + B] )
EX[A,A] + EX[A,B] + EX[B,B].

For a QM/MM calculation, the charge distribution is
partitioned into a QM charge distribution that consists of
the quantum mechanical electron density and nuclear core
charges and an MM charge distribution that consists of the
partial atomic charges of the MM environment. The total

Esurf(q
N,rN,U;P,ε) )

1

2
R(P,ε)|∑

j

qjr j|2

) 1
2
R(P,ε)‚|D|2 (6)

lim
εf∞

R(P,ε) ) 0 (7)

Eelec)
1

2
∑

i

N

∑
j

N

qiqjψE(r ij) (8)

ψE(r ij) ) ((1 - δij)erfc(κ|r ij|)
|r ij|

-
2κ

xπ
δij +

4π

V
∑

|k|*0

exp(-k2/4κ
2)

k2
cos(k‚r ij)) (9)

EX[A,B] )
2 - δA,B

2 ∫∫QA(r )GX(r ,r ′)QB(r ′)d3rd3r′ (10)

∇r
2G(r ,r ′) ) -4πδ(r - r ′) (11)

4 J. Chem. Theory Comput., Vol. 1, No. 1, 2005 Nam et al.



energy of the system, under periodic boundary conditions,
is thus given by

whereF represents the distribution of electron densityF of
the QM atoms (plus the core nuclear charges) andq
represents the distribution of classical MM point charges.
Recall that the number of atoms associated with the QM
charge distribution (NQM) is typically much smaller than the
number of atoms associated with the MM charge distribution
(NMM) and that the latter distribution spans a much greater
spatial extent. The main problem to overcome involves the
calculation of the electrostatics in theEPB[G,G] andEPB[G,q]
terms, since, for semiempirical methods, these terms involve
a smooth charge density with high atomic multipolar
character. However, the same electrostatic interactions for
this term are straightforward to calculate in real-space and,
in fact, are part of the computational machinery of any stand-
alone or integrated semiempirical quantum method. This
observation motivates rewriting the expression of eq 12 as

Consider now an approximate quantum mechanical charge
distribution,Q, that is modeled as a set of auxiliary point
charges such that the electrostatic potential closely represents
that of the full QM charge distribution at distances on the
order of the distance between crystal images. In the present
work, simple Mulliken charges38 are used for this purpose.
However, alternate charge partitioning,39-41 charge map-
ping,42-45 or charge fitting46,47procedures could also be used
as well. The Mulliken charge is particularly convenient to
incorporate into the Fock operator, as is discussed below,
owing to the simple linear relation with the single-particle
density matrix. At short range, the potential due to these
charges will deviate significantly from the exact quantum
mechanical potential, but at distances on the order of a full
unit cell translation away, the differences are very small. This
motivates introduction of the following approximation for
eq 13 as

The above equation for the Ewald energy is useful for
practical implementation into semiempirical QM/MM meth-
ods. It is clear, for example, that eq 14 requires evaluation
of the periodic boundary energy only for the point charge
distributions,Q andq, whereas the more complicated exact
quantum mechanical charge distribution,F, is required to
be evaluated in real space.

2.3. Combined QM/MM Potential in Real Space.
Combined QM/MM potential methods have been reviewed
extensively elsewhere5,6,48 and are only briefly outlined in
this subsection. The effective Hamiltonian for the combined
QM/MM potentials treated in the present work take the form

whereĤQM
0 is the Hamiltonian for the QM charge distribu-

tion represented as nuclei and electrons within the Born-
Oppenheimer approximation andĤMM is the molecular
mechanical potential of MM atoms. Two coupling terms,
ĤQM/MM

el and ĤQM/MM
VdW , represent interactions between QM

and MM sites: ĤQM/MM
el accounts for the electrostatic

interactions of electrons and nuclei on QM atoms with point
charges on MM sites, andĤQM/MM

vdW represents the short-
range Pauli exchange repulsion and the long-range dispersion
interactions and is modeled by a Lennard-Jones form. In real-
space calculation, which is modified below to include long-
range electrostatic interactions, the electrostatic interaction
Hamiltonian,ĤQM/MM

el , given in eq 15 is written, in atomic
units, as an exact interaction Hamiltonian of QM nuclei and
electrons with MM atoms represented by partial point charges

whereqi andZR are charges on MM and QM nuclei,Ne is
the total number of electrons in QM region, andria andRiR

are the distances of the quantum electrons and nuclei from
the classical charge sites, respectively.

Then, the real-space potential energy in the combined QM/
MM potential is computed using eq 17

whereΦ is the wave function of the solute in the field of
MM environment, in whichEQM + EQM/MM

el-RS is determined
through Hartree-Fock self-consistent-field (SCF) MO cal-
culation by solving the Roothaan-Hall equation49

whereFRS, CRS, andS denote the Fock, eigenvectors, and
overlap matrices in real space, respectively, andERS is the
diagonal matrix of orbital energies for molecular orbitals.
The combined QM/MM potential constructed in this way is
expected to be valid in the range that the QM model is
adequately large so as to capture the essential chemical
reaction process, and the MM model provides a sufficiently
accurate representation of the electrostatic environment.

2.4. Ewald Modifications to the Effective Hamiltonian
(Fock) Matrix Elements. The elements of the effective
Hamiltonian (Fock) matrix,Fµν, in a periodic boundary
system are defined as

whereE[F] is the total energy that depends on the single-
particle density matrix,F, with elementsFµν and is related
to the terms in eq 14 by

This energy can be decomposed into QM and QM/MM
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EPB[G + q,G + q] ) (EPB[G,G] - ERS[G,G]) + ERS[G,G] +
(EPB[G,q] - ERS[G,q]) + ERS[G,q] + EPB[q,q] (13)

EPB[G + q,G + q] ≈ (EPB[Q,Q] - ERS[Q,Q]) + ERS[G,G] +
(EPB[Q,q] - ERS[Q,q]) + ERS[G,q] + EPB[q,q] (14)
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0 + ĤQM/MM
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vdW + ĤMM (15)

ĤQM/MM
el-RS ) -∑

i

NMM

∑
a

Ne qi

ria

+ ∑
i

NMM

∑
R

NQM qiZR

RiR

(16)

ERS[G] ) 〈Φ|Ĥeff|Φ〉 )
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components, each of which consists of a real-space term plus
a periodic boundary correction(PBC) as

where

Note that although the energyE[F] depends on the density
matrix F in a fairly complicated way, the periodic boundary
correction terms (eqs 23 and 25) depend on the density matrix
only through the atomic charge vectorQ. The Fock matrix
can similarly be decomposed into a real-space term plus a
periodic boundary correction as

where

For the purposes of the present work, only thecorrection
to the Fock matrix (∆Fµν

PBC) that arises from introduction of
the periodicity is described, because it is presumed that the
machinery for construction of the complete Fock matrix in
real space (Fµν

RS) is already available.36,50For the purposes of
implementation, the present work formulates extension to
periodic systems as an additional term that can be included
by an auxiliary computer subroutine or module.

The task that remains is to write the periodic boundary
correction to the energy in eq 27 in terms of the set of
Mulliken charges38 {QR}, defined in NDDO-based semiem-
pirical methods as

whereR is an atom index, in a manner that is efficient to
calculate and update during the self-consistent field (SCF)
procedure. As mentioned previously, other charge parti-

tioning,39-41 charge mapping,42-45 or charge fitting46,47

methods may also be employed so long as a rigorous
mapping to the single-particle density matrix can be affected
such that the Fock matrix may be modified accordingly.
From the periodic correction to the energy (∆EPBC[Q] of eq
27), the chain relation is used to obtain the periodic correction
to the Fock matrix elements as

To maximize efficiency of the method, one must bear in
mind that the number of MM atoms,NMM, usually greatly
exceeds the number of quantum atoms,NQM. Moreover, at
each molecular dynamics integration step, the calculation of
the QM/MM total energy and gradient requires an SCF
procedure to be performed, and consequently, the periodic
potential due to the QM charge distribution must be updated
(recalculated) at each SCF iteration. Note that the atomic
positions of all the atoms in the system remain fixed during
the SCF procedure.

Consider the first periodic energy correction term,
∆EQM

PBC[Q], of eq 23. If the convention is used that the
Ewald parameterκ is chosen such that the summation over
real-space lattice vectors includes only the|n| ) 0 term, the
first periodic energy correction term can be written con-
cisely as

where∆ψE(RRâ) is the periodic correction to the Ewald pair
potential (eq 9), and with the choice ofκ above, is given by

Note that in the derivation of eq 34 the limiting relation was
used

For the QM periodic correction term (eq 33), the corre-
sponding correction to the Fock matrix must be recalculated
at each step of the SCF procedure. Since the number of
quantum atoms is small, the correction to the Ewald pair
potential (eq 34) needed for the Fock matrix can easily be
calculated once as anNQM × NQM matrix and stored and
hence not be recalculated during the SCF. This makes
calculation of the periodic correction to the Fock matrix
consist of a simple matrix multiplication of the Ewald pair
potential correction with the Mulliken charge vector, only
the latter of which changes at each iteration.
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Consider now the second periodic energy correction term,
∆EQM/MM

PBC [Q], of eq 30 (see also eq 25) that can be written
as

In this case, the corresponding correction to the Fock matrix
doesnotneed to be updated during the SCF procedure, since
the MM charge distribution is not changing. Consequently,
the periodic correction to the static potential of the MM
charges at the QM charge positions can be calculated once
as aNQM × 1 vector and simply added to the 1-electron terms
of the Fock matrix (sometimes referred to as thecore
Hamiltonian matrix). The above procedure leads to an
efficient method for calculation of long-range electrostatic
interactions in combined QM/MM calculations.

3. Computational Details
The combined QM/MM-Ewald sum method has been
implemented into a modified version of CHARMM51 (ver-
sion c30a1) interfaced with the MNDO97 program52 and
MOPAC.53 To test the method introduced in the present
work, simulations of ion association processes and dissocia-
tive mechanisms of phosphoryl transfer were performed. The
interionic potential of mean force was calculated for each
simulation and compared with calculated values from non-
periodic (full electrostatic or cutoff) and periodic (cutoff)
simulations. In particular, the following systems were
examined: the ionic association of (1) ammonium chloride
and (2) ammonium metaphosphate and the dissociative
phosphoryl transfer mechanism of (3) methyl phosphate and
(4) acetyl phosphate. The semiempirical AM1 model50 was
used for the ammonium chloride system, and MNDO/d54 for
the phosphorus-containing systems for whichd-orbitals have
been shown to be important.55 The solutes were treated fully
quantum mechanically at the semiempirical level and were
solvated in a 40.0 Å cubic box of TIP3P water molecules,56

resulting in a total of 2042 waters for the ammonium chloride
system, 2040 waters for the ammonium metaphosphate
system, 2038 waters for the methyl phosphate system, and
2035 waters for the acetyl phosphate system. Internal water
geometries were constrained using the SHAKE algorithm
in all simulations.57

A spherical cutoff scheme was used to evaluate the van
der Waals and the real-space electrostatic interactions in the
QM/MM-Ewald method and in the non-Ewald approaches.
In all cases, water molecules were included in the cutoff list
if the geometrical center of water was less than the cutoff
distance from any group center of the solute. The solute ion
pair was divided into two groups, one for each formal ion.
It should be emphasized that in evaluating QM/MM interac-
tion energies, solute-solvent (or QM-MM) interactions were
determined for the entire QM system, whenever a solvent
molecule was within the cutoff distance from any solute
(QM) group. In simulations using the QM/MM-Ewald sum
technique, a 10.0 Å group-based cutoff was used. The
nonbonded list and crystal images were updated every 25
steps during molecular dynamics simulations. For Ewald

summation, the Ewaldκ value (see above) was chosen to
be 0.340 Å-1, and the smooth particle mesh Ewald (PME)
method was employed for reciprocal space summations
between MM sites with an approximate grid size of 0.8 Å
(50× 50× 50 FFT grid)27,31and with net charge correction
to the Ewald potential suggested by Bogusz et al.33 All
simulations were propagated using the leapfrog Verlet
algorithm with 1 fs integration time step.24 Periodic boundary
conditions were used along with the isothermal-isobaric
ensemble (NPT) at 1 atm and 298 K using extended system
pressure algorithm of Andersen58 with effective mass of
500.0 amu and Hoover thermostat59 with effective mass of
1000.0 kcal/mol-ps2, respectively. In the QM/MM simula-
tions under PB without Ewald summation, electrostatic
interactions were determined using a spherical cutoff scheme
based on group separation with switching between 10.5 and
11.5 Å.

The potential of mean force (PMF) profiles have been
determined using umbrella sampling,60 in which PMF is
represented as a function of internuclear distance defined as
the N‚‚‚Cl distance (RN-Cl) in ammonium chloride, the N‚‚‚P
distance (RN-P) in ammonium metaphosphate, and the O‚‚‚P
distance (RO-P) in methyl phosphate and acetyl phosphate.
After initial 200 ps of equilibration, 25 separate umbrella
sampling windows (28 windows in the simulations of
dissociative phosphoryl transfer reactions) were executed to
span the internuclear separation up to 12.0 Å by applying a
harmonic restraining potential centered at the center of the
particular umbrella window. The spacing between neighbor-
ing windows was a function of the interionic separation
distance: 2.0, 2.5, and 5.0 Å spacings were used for
interionic separation distancesR in the range ofR e 3.0 Å,
3.0 Å e R e 4.0 Å, andR g 4.0 Å, respectively. The force
constants used were chosen and adjusted based on the shape
of PMF profile for each system tested to guarantee sufficient
overlap of the probability distribution with neighboring
windows (force constant values ranged between 80.0-150.0
kcal/mol-Å in the region of steep repulsive wall at smallR,
40.0-80.0 kcal/mol-Å in the intermediate separation, and
10.0-40.0 kcal/mol-Å in the region of large interionic
separation). Each umbrella sampling window was equili-
brated for 35 ps followed by 50 ps of production with data
collected every step. The weighted histogram analysis
method (WHAM)61 was employed to compute the potential
of mean force as a function of internuclear separation.

For additional comparison of the ion association simula-
tions, umbrella sampling simulations were also performed
to compute interionic PMF profiles with stochastic boundary
molecular dynamics (SBMD)62,63 by using spherical water
box for ammonium chloride with 1034 TIP3P water mol-
ecules and ammonium metaphosphate with 1031 TIP3P
waters. Simulations were performed without cutoff as well
as with a 11.5 Å nonbonded cutoff as in the periodic
simulations. The radius of water sphere is 20.0 Å to keep
the size of the simulation fairly close to that of the PB
simulations.

∆EQM/MM
PBC [Q] ) ∑

R

NQM

QR∑
j

NMM

qj∆ψE(RR - r j) (36)
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4. Results and Discussion
The focus of the current paper is to describe the development
and implementation of an efficient QM/MM-Ewald method
and provide benchmark simulation tests and to characterize
the effects of treatment of electrostatic interactions on the
QM/MM free energy profiles. Emphasis will not be placed
on detailed analysis of the simulations and comparison with
experiment that would first require a more quantitative
assessment of the accuracy of the quantum and solvation
models and QM/MM parameters. Development of new
semiempirical quantum models for chemical reactions is an
area of intense effort,64-70 and consequently the extension
of methods for efficient treatment of long-range electrostatic
interactions in these calculations is of prime importance.

This section presents results of simulations of ion associa-
tion and dissociative phosphoryl transfer using the QM/MM-
Ewald method developed in the present work. The effects
of periodicity and electrostatic cutoff are compared from
PMF profiles of separate simulations. For the ion association
tests (ammonium chloride and ammonium metaphosphate),
PBMD and SBMD simulations are compared both with and
without electrostatic cutoffs (the simulations without cutoffs
are referred to as the QM/MM-Ewald and full-electrostatic
SBMD for periodic and nonperiodic systems, respectively).
For the phosphoryl transfer reactions (methyl phosphate and
acetyl phosphate), PBMD simulations with and without
electrostatic cutoff are compared (i.e., PBMD with cutoff
and QM/MM-Ewald simulations). A summary of the ob-
served fluctuations in potential energy, volume, temperature,
and total force over a 10 ps interval for each of the QM/
MM-Ewald simulations are shown in Table 1. The relative
force errors for cutoff and alternative Ewald methods with
respect to the QM/MM-Ewald method are compared in Table
2. A noteable feature is that inclusion of the Ewald term as
a post-SCF correction still leads to considerable force error.
The comparison underscores the importance of inclusion of
long-range electrostatics in the simulation and updates of
the periodic contribution to the quantum polarization during
the SCF procedure since, although the post-SCF molecular
mechanical Ewald correction of QM/MM calculation using
Mulliken charge representation on quantum atoms improves
the force error significantly, it still leads to considerable error.

4.1. Association of Oppositely Charged Ions. 4.1.1.
Ammonium Chloride. Figure 1 compares the PMF profiles
for ion association of ammonium chloride as a function of
the N‚‚‚Cl distance from simulations with and without
electrostatic cutoffs under nonperiodic and periodic boundary
conditions. The zeros of the PMFs were set to the minimum
value for the ionic complex.

The electrostatic cutoff causes an artificial decrease in the
PMF for oppositely charged ions at a large separation
irrespective of whether the system is treated with spherical
stochastic boundary (SBMD with cutoff) or with periodic
boundary (PBMD with cutoff) conditions. Alternately, the
full-electrostatic simulations (QM/MM-Ewald and full-

Table 1. Relative Fluctuations in Potential Energy (σE), Volume (σV), Temperature (σT), and Average Total Force (Fave
tot ) from

MD Simulations Using QM/MM-Ewald with PME for MM Electrostaticsa

σE σV σT Fave
tot b

NH4
+‚‚‚CL- 3.60 × 10-3 5.52 × 10-3 1.01 × 10-2 2.55 × 10-2

NH4
+‚‚‚PO3

- 3.49 × 10-3 4.77 × 10-3 0.99 × 10-2 2.51 × 10-2

CH3O-‚‚‚PO3
- 3.75 × 10-3 4.04 × 10-3 1.05 × 10-2 2.51 × 10-2

CH3CO2
-‚‚‚PO3

- 3.47 × 10-3 5.42 × 10-3 1.03 × 10-2 2.54 × 10-2

a σ
E ) rmsE/Eave, σ

V ) rmsV/Vave, and σ
T ) rmsT/Tave where rms is the root mean square deviation of those properties. b The average total

force goes to zero when regular Ewald sum method is used for MM electrostatics.

Table 2. Comparison of the Force Errors on the QM
Atoms for Several Electrostatic Methods: Root Mean
Square Error (RMSE), Mean Signed Error (MSE), Mean
Unsigned Error (MUE) of Force, and Maximum Force Error
(MAXE)a

RMSE MSE MUE MAXE

Methyl Phosphateb

10.0 Å cutoff 1.618 -0.010 1.221 4.612
11.5 Å cutoff 2.221 0.052 1.726 6.073
Post-SCF Ewaldc 1.155 0.006 0.808 3.864

Acetyl Phosphated

10.0 Å cutoff 2.836 -0.064 1.961 8.404
11.5 Å cutoff 1.830 -0.015 1.195 5.271
Post-SCF Ewaldc 1.810 -0.009 1.138 6.642

a All units are kcal·mol-1‚Å-1. b The forces are computed at the
transition state of RO-P ) 3.2 Å. c The forces from Ewald potential
are added to the forces computed from 10.0 Å cutoff, in which the
Ewald potential has been computed from the Mulliken charges of the
QM atoms. d The forces are computed at the transition state of
RO-P ) 2.9 Å.

Figure 1. Comparison of potential of mean force (PMF)
profiles for the ionic separation (RN-Cl) of ammonium chloride
(NH4

+‚‚‚Cl-) in water. Profiles were constructed from MD
simulations with periodic boundary conditions using the
combined QM/MM-Ewald sum (solid blue line) and PBMD
method with 11.5 Å cutoff (dashed blue line) and with full-
electrostatic SBMD (solid red line) and SMBD with 11.5 Å
(dashed red line).
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electrostatic SBMD) show the expected flattening of the PMF
at large distances. These profiles are similar between the QM/
MM-Ewald and the full-electrostatic SBMD simulations. The
behavior of all the PMF profiles are similar up to an interion
separation of around 3.0 Å, after which, the results of the
cutoff simulations begin to diverge significantly from those
of the QM/MM-Ewald and full-electrostatic SBMD simula-
tions. The barrier for ionic dissociation is about 3.6 kcal/
mol (QM/MM-Ewald), 3.4 kcal/mol (full-electrostatic SBMD),
2.3 kcal/mol (PBMD with cutoff), and 1.7 kcal/mol (SBMD
with cutoff), respectively. The cutoff methods affect the
energy barrier by over 1 kcal/mol at the transition state (a
distance of less than 0.8 Å from the minimum) and have an
even more profound effect at larger distances in the PMF
profile.

At large separation, the PMF profiles of the simulations
with long-range electrostatics become relatively flat after
about 7.0 Å, indicating the ions are effectively shielded by
the nonlocal solvent response. Alternately, the PMF profiles
of the cutoff simulations show a steady linear drift from
around 6.0 Å out past 10 Å. This linear drift of the PMF
profiles for the cutoff simulations is due to an imbalance in
the electrostatic interactions. The dipole moments of the
waters solvating the individual oppositely charged ions are
favorably aligned in the region between the ions and
unfavorably aligned at opposite ends. The unfavorable
interactions at the ends fall outside the cutoff first as the
ions separate, while the interactions of the favorably aligned
waters in the center are retained and result in the artificial
drift in the PMF profiles. It is likely, therefore, that QM/
MM simulations of biochemical reactions that involve
association or dissociation of oppositely charged species,
such as seen in many biochemicalSN1 reactions and
photodissociation processes, may be subject to artificial
overstabilization of the separated ionic species if electrostatic
cutoffs are used.

4.1.2. Ammonium Metaphosphate.Figure 2 compares
the PMF profiles for ion association of ammonium meta-
phosphate as a function of the N‚‚‚P distance from simula-
tions with and without electrostatic cutoffs under nonperiodic
and periodic boundary conditions. The zeros of the PMFs
were set to the limiting long-range value for the QM/MM-
Ewald and full-electrostatic SBMD simulations and adjusted
such that the short-ranged repulsive wall were coincident
for the cutoff simulations. In these simulations, the MNDO/d
Hamiltonian was employed since it has been demonstrated
to provide a reliable description of biological phosphorus
compounds.54,55,70 Unlike the ammonium chloride PMF
(Figure 1) that exhibits a stable free energy minimum for
the ion-ion complex, the PMF profile for ammonium
metaphosphate decreases monotonically. In the short range
(N‚‚‚P distances less than 4.0 Å), all of the PMF profiles
are similar; however, after 4.0 Å, the PMF values for the
cutoff simulations diverge from those of the QM/MM-Ewald
and full-electrostatic SBMD simulations. The long ranged
behavior of the PMF for the QM/MM-Ewald and full-
electrostatic SBMD are quite similar, exhibiting a flat
asymptotic limit after around 6.5 Å, indicating the oppositely
charged ions are effectively screened. The PMF profiles for

the PBMD and SBMD cutoff simulations show a linear drift
after 6.0 Å, as in the ammonium chloride case (Figure 1). It
is likely that the metaphosphate plane has a random orienta-
tion relative to the ammonium ion at large separation, but,
as the ions approach each other, the plane is aligned
perpendicular to the N‚‚‚P vector. At this short separation,
the partial positive nature of phosphorus atom cancels the
favorable interactions between ammonium and oxygens in
metaphosphate and results in no stable ion-ion complex.
The results of these simulations echo those for the am-
monium chloride system: QM/MM simulations of reactions
that involve the dissociation of oppositely charged ions may
lead to separated ionic species that are significantly over-
stabilized.

4.1.3. Effect of Cutoff on the Association of Oppositely
Charged Ions. The effect of treatment of electrostatic
interactions for the association of oppositely charged ions
has been studied previously, although to our knowledge, not
with the same QM/MM-Ewald model as presented in the
present work. At long range, both ion association PMF
profiles exhibit an artificial linear drift using either PBMD
or SBMD with cutoff. The slope of the linear drift from 6
to 10.0 Å is similar between the PBMD and SBMD cutoff
simulations with values of-2.25 and-1.66 kcal/mol-Å,
respectively, for ammonium chloride and-2.01 and-1.86
kcal/mol-Å, respectively, for ammonium metaphosphate. For
opposite-charged ionic systems, the results from current
simulations indicate an unphysical roughly linear downward
drift in the PMF profiles as the ions separate. Rozanska and
Chipot also observed a similar artifact for the PMF profile
of guanidinium-acetate association from molecular dynamics
simulations using a smoothed electrostatic cutoff, whereas
the simulations using the Ewald sum showed the expected
solvent shielded behavior of solvent-separated ion pair, and
the generalized reaction field correction also significantly

Figure 2. Comparison of potential of mean force (PMF)
profiles for the ionic separation (RN-P) of ammonium meta-
phosphate (NH4

+‚‚‚PO3
-) in water. Profiles were constructed

from MD simulations with periodic boundary conditions using
the combined QM/MM-Ewald sum (solid blue line) and PBMD
simulations with 11.5 Å cutoff (dashed blue line) and with full-
electrostatic SBMD (solid red line) and SMBD with 11.5 Å
(dashed red line).
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improved the description relative to the cutoff method except
toward the edge of the cutoff sphere.71

4.2. Dissociative Phosphoryl Transfer Mechanisms.The
nonenzymatic and enzymatic chemical mechanism of phos-
phate hydrolysis reactions remains a topic of discussion and
considerable debate.72 Phosphate hydrolysis reactions are
often discussed in terms of their associative or dissociative
character73 that can sometimes be distinguished kinetically.
Kinetic measurements provide crucial data for these reac-
tions, although they do not always provide a unique
mechanistic interpretation.74,75 The associative versus dis-
sociative character is governed by many factors including
the degree of esterification of the phosphate, the protonation
state, the nature of the leaving group, and interactions with
solvent, ions, and macromolecular environment.

To test the QM/MM-Ewald method, the dianionic dis-
sociative phosphoryl transfer pathways for methyl phosphate
and acetyl phosphate were examined using PBMD simula-
tions both with electrostatic cutoff and with the QM/MM-
Ewald method. Methyl phosphate is a commonly employed
model for phosphoryl transfer reactions in kinases and
phosphatases, and acetyl phosphate represents a model for
a high-energy intermediate in the metabolism of many
bacteria.76 The first step of the dissociative pathway (Scheme
1) involves a dephosphorylation step characterized by the
departure of a solvated metaphosphate (PO3

-) group. The
second step of the reaction involves the nucleophilic
substitution to the metaphosphate by a nucleophile (usually
a hydroxide ion or a water molecule in solution). This type
of reaction is referred to as aDN + AN type mechanism in
IUPAC nomenclature.77

4.2.1. Methyl Phosphate.Figure 3 shows the computed
PMF profile for methyl phosphate. The free energy of
dissociation from current PMF profiles with QM/MM-Ewald
method is 27.1 kcal/mol for methyl phosphate, and the
activation free energy barrier is 32.8 kcal/mol. The effect of
cutoff in the PBMD simulations is to raise the activation
free energy barrier to 35.4 kcal/mol (an increase of 2.6 kcal/
mol, or 8%). The effect of cutoff is even more pronounced

on the free energy of dissociation due to cutoff artifacts of
the like-charged ions at fairly large separation (see below).

There have been several studies from experiment and
theory for the dissociative reaction of methyl phosphate. The
reaction free energy estimated from experiment by Guthrie
is 37( 3 kcal/mol.75,78This indicates the reaction free energy
calculated with the present work may be as much as 10 kcal/
mol in error. Although it is not the purpose here to present
free energy profiles with the greatest accuracy, it is worth-
while to point out the likely sources of error in order to assist
in the development of improved QM/MM models. The main
sources of error involve the semiempirical quantum model
itself, the simplistic molecular mechanical model for water,
and the QM/MM van der Waals interactions. The latter has
a tremendous effect on the reaction free energies and barrier
heights for processes that involve ion association/dissociation.
For example, the heat of formation of methoxide (CH3O-)
ion computed from MNDO/d Hamiltonian gives-39.7 kcal/
mol in the gas phase,36,54while the experimentally determined
value is-32.2( 1.1 kcal/mol.79 The error in the methoxy
ion from semiempirical MNDO/d model alone is 7.5 kcal/
mol, which is close to the 10 kcal/mol difference between
computed reaction free energy and experiment. A promising
approach toward improvement of semiempirical quantum
models is to develop reaction-specific parameters70 that
closely reproduce high-level quantum results.80,81 Addition-
ally, the model for water that was employed lacks explicit
electronic polarizability, which is expected to be important
for the stabilization of highly ionic systems such as those
studied here. Finally, the optimization of the QM/MM van
der Waals radii82-84 to reproduce correct relative solvation
free energies is critical. All of these areas will be addressed
in future work.

4.2.2. Acetyl Phosphate.Figure 4 shows the computed
PMF profiles for acetyl phosphate. The free energy of
dissociation from current PMF profiles with QM/MM-Ewald
method is 6.8 kcal/mol for acetyl phosphate, and the
activation free energy barrier is 12.2 kcal/mol. The effect of
cutoff in the PBMD simulations raised the activation free
energy barrier to 13.8 kcal/mol (an increase of 1.6 kcal/mol
or 13%). As for the dissociative phosphoryl transfer of
methyl phosphate, the effect of cutoff has an even more
profound effect on the free energy of dissociation (see
below).

Figure 3. The computed PMF from PBMD simulations using
combined QM/MM-Ewald sum potential (solid blue line) and
with 11.5 Å cutoff (dashed red line) for the dissociation of
methyl phosphate (CH3O-‚‚‚PO3

-) in water.

Scheme 1. Dissociative Phosphoryl Transfer Mechanism
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The dissociative free energy activation barrier for acetyl
phosphate is predicted to be 20.6 kcal/mol less than that for
methyl phosphate. This is largely due to the increased
stability of the acetate anion in solution, which has a much
lower pKa value (4.8) than methanol (15.5),85 and is a
considerably better leaving group. The reaction free energy
for acetyl phosphate is similarly predicted to be lower than
that of methyl phosphate by 20.3 kcal/mol. Thus, the
lowering of the activation barrier can be explained by the
added stabilization of the acetate anion relative to the
methoxide anion, in accord with the Hammond postulate.86,87

4.2.3. Effect of Cutoff on the Dissociation of Like
Charged Ions.The free energy of dissociation from current
PMF profiles with Ewald sum is 27.1 kcal/mol for methyl
phosphate and 6.8 kcal/mol for acetyl phosphate, respec-
tively. The barrier height is 32.8 kcal/mol for methyl
phosphate and 12.2 kcal/mol for acetyl phosphate from
simulations with Ewald sum, while it is 35.4 kcal/mol and
13.8 kcal/mol with the cutoff method, respectively. The radial
distribution function of water molecule around the solute at
the transition state of both reactions has been checked, but
no significant differences between QM/MM-Ewald and
cutoff simulations were observed (data not shown). Thus,
the difference in the barrier heights of dissociation reactions
can most likely be attributed to long-range electrostatic
effects that involve the ions and solvent.

The PMF profiles of the like-charged ionic systems of the
present work are nonmonotonic and exhibit a broad minimum
between 5 and 7 Å. Nonmonotonic PMF profiles arising from
the use of electrostatic cutoffs have been previously observed
by Bader and Chandler88 in the dissociation of ferric and
ferrous ion models in aqueous solution, whereas with the
use of Ewald sums, correct monotonic PMF profiles were
obtained. Furthermore, a comparison of the spatial distribu-
tion functions of like ion pairs have been investigated by
Dang and Pettitt using molecular dynamics simulation and
integral equation theory.89 The results suggest the existence
of a minimum for Cl--Cl- pair at close distances and also
a slight minimum at larger distance (6-7 Å) using a cutoff

method with switching.89 Del Buono et al. studied Cl--Cl-

pair and ferric and ferrous ion pair by computing solvent
dielectric response90 and also found an artificial minimum
at large separation by using electrostatic cutoff methods as
Dang and Pettitt,89 in which the smooth truncation of
electrostatics even amplifies this artifact. Alternately, the
PMF profiles from simulations using Ewald sums produced
the correct high dielectric shielding of the ions by water and
removed the artificial minimum at large separation.

5. Conclusion
The current paper presents an extension of Ewald summation
method to combined QM/MM calculations with semiem-
pirical quantum models. The method is tailored to systems
where the number of quantum atoms is small compared to
the number of molecular mechanical atoms such that the
Ewald contribution to the Fock matrix elements can be
evaluated efficiently during the self-consistent field procedure
required at each step of a molecular dynamics calculation.
The method is based on a partition of the total Ewald
potential into a short-ranged real-space interaction and a long-
range periodic correction. The periodic correction term
requires only a Mulliken charge representation of the charge
density and hence can be used with any efficient linear-
scaling Ewald method for point charge (or multipolar)
systems, such as the particle mesh Ewald method. If the
number of quantum atoms is sufficiently small, a consider-
able reduction in computational cost can be achieved through
direct computation of the Ewald pair potential correction for
only the quantum atoms such that the periodic correction to
the electrostatic energy can be efficiently affected at each
SCF iteration by a simple matrix multiplication with the
Mulliken charge vector. Although the method is applied with
semiempirical quantum methods in the present work, the
methodology can be extended to other quantum models such
as density-functional methods without significant code
modifications. The implementation and performance of the
method is tested in simulations of ion-ion association and
on dissociative phosphoryl transfer reactions. The PMF
profiles from these simulations are compared with those of
full-electrostatic SBMD simulations and PBMD and SBMD
simulations with electrostatic cutoff. Significant artifacts arise
in the reaction free energies and activation barriers when a
cutoff is used. These artifacts vanish when the QM/MM-
Ewald method is employed. Despite the known problems
associated with the use of electrostatic cutoffs, the majority
of present day applications of QM/MM methods routinely
employ cutoffs in simulations of biological reaction dynam-
ics. Consequently, the present method offers an important
extension of linear-scaling Ewald techniques to combined
QM/MM calculations of large biological systems.
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